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Abstract. The cost to repair a requirements-based defect in software-
based systems increases substantially with each successive phase of the
software lifecycle in which the error is allowed to propagate. While tools
exist to facilitate early detection of design flaws, such tools do not detect
flaws in system requirements, thus allowing such flaws to propagate into
system design and implementation. This paper describes an experience
report using a toolchain that supports structural and behavioral analy-
sis of UML state diagrams that is not currently available in commercial
UML modeling tools. With the toolchain, models can be incrementally
and systematically improved through syntax-based analysis, type check-
ing, and detection of latent behavioral system properties, including fea-
ture interactions. This paper demonstrates use of the toolchain on an
industry-provided model of onboard electronics for an automotive appli-
cation.
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1 Introduction

In software development, the cost to repair a defect increases substantially with
each successive phase of the software lifecycle [1, 2]. When a defect is allowed to
propagate into the design and implementation phases, the number of artifacts
(e.g., models and documentation) that are affected by it also increases. Typi-
cally, during the requirements phase the system’s stakeholders describe the key
needs and problems that the system-to-be should address, usually using natural
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language. As a means to clarify and refine requirements that have been expressed
in natural language, developers construct domain models that identify the key
elements of the system and their relationships to one another, as well as their
relationships to external elements. In order to better understand the required be-
havior, developers often create prototypes or state-based representations based
on the domain model. While simulations and executable prototypes enable vali-
dation of requirements, it is equally important to be able to verify requirements
to identify inconsistencies, (invariant) property violations, etc. Thus, there is a
need for tools that identify errors in requirements specifications based on anal-
ysis of early prototype models. This paper presents a toolchain that facilitates
the detection of syntactic and semantic errors in state-based diagrams and also
identifies properties that specify latent behavior, the unspecified and potentially
unwanted behavior of the model.

Many tools have been developed to support model-driven engineering of soft-
ware systems. Tools such as ArgoUML [3], Rational Software Architect [4], and
Microsoft Visio [5] support visual modeling of software designs via the Unified
Modeling Language (UML). IBM Rational Rhapsody [6] supports UML mod-
eling as well as code generation and many consistency tests to ensure that the
system under development is free of syntax errors. However, none of these tools
performs syntax or type checking on state transition expressions in state dia-
grams. Particularly for applications involving complex logic and system behavior
(e.g., embedded systems), transitions may contain complex guards and action
statements that often define the core functionality of the system being modeled.
Thus, tools that treat the transition expressions as uninterpreted strings allow
subtle errors to propagate into the source code that is generated from the model,
particularly in the context of model-driven engineering. Furthermore, while tools
such as Rhapsody provide traceability from requirements to source code, to the
best of the authors’ knowledge no existing commercial or research tools provide
the comprehensive automated identification of the collection of different types
of errors covered by our toolchain for UML models.

This paper describes an experience report from using a newly-developed
toolchain that supports syntax and type checking as well as detection of la-
tent system properties. After requirements have been elicited for an embedded
system, developers often build a domain model using class diagram syntax that
describes the key elements of the system (including physical elements, such as
sensors and actuators, and software elements, such as controllers) and elements
in the environment with which the system interacts. A state diagram is cre-
ated for each key element, resulting in a collection of interacting state diagrams.
While such diagrams are useful for refining system requirements and may be
used during the design phase, there is limited tool support for detecting errors
in syntax and semantics, and to our knowledge there is no tool support for au-
tomatically identifying latent properties. The proposed toolchain has two key
advantages over current approaches. First, all state transition expressions are
parsed and type-checked, thus identifying many errors that existing tools do not
address until the code generation phase. Second, automated detection of latent



properties enables system developers to identify so-called blind spots in system
requirements. Blind spots are missing or incomplete requirements that are over-
looked by requirements engineers, and they are often discovered only after the
system has been partially implemented or, worse yet, deployed to the field. By
identifying these errors early in the development process and suggesting reso-
lution strategies when possible, the proposed toolchain minimizes the number
of subtle design defects and the cost of redesigning the system to correct the
defects.

The proposed toolchain comprises three main tools: Cyclops, a model pre-
processor that identifies common syntax and semantics errors in behavioral mod-
els specified in XMI (XML Metadata Interchange) format; Hydra, a tool for
translating UML behavioral models into Promela, the formal language for the
SPIN model checker [7]; and Marple, a tool for automatically generating prop-
erties that are satisfied by the model and may represent latent and potentially er-
roneous behavior. We apply this toolchain to an industrial software system from
the automotive embedded systems domain. The software system comprises three
subsystems: Lighting, Power Management, and Windshield Wipers. The Lighting
subsystem handles all functionality related to interior lamps, headlights, and
tail lights. The Power Management subsystem monitors and controls the igni-
tion status, vehicle speed, door statuses, battery status, and other electronic
features. The Windshield Wipers subsystem controls the movement and speed of
the windshield wipers. The subsystems are sophisticated and interact with one
another at run time, thus creating the potential for errors in modeling semantics,
unintended behavior that spans multiple subsystems, and feature interactions.

Based on feedback from the developer of the model, it is clear that several of
the detected errors would have been very difficult and time-consuming to detect
and resolve without the use of the toolchain. The remainder of the paper is
organized as follows. In Section 2, we discuss background concepts. We present
the software model that was studied in this work in Section 3. Next, we describe
the process of using the toolchain in Section 4. Section 5 describes related work.
Our experience of applying the toolchain to an automotive embedded systems
model is presented in Section 6. We discuss the results and consequences of
applying the toolchain in Section 7. Finally, we present our conclusions and
discuss future work in Section 8.

2 Background

In this section, we discuss background concepts and enabling technologies that
support the proposed toolchain, including the Unified Modeling Language, the
SPIN model checker, evolutionary computation, and novelty search. These en-
abling technologies are presented according to the tool(s) that leverage their
capabilities.

2.1 Cyclops and Hydra
Cyclops and Hydra have been developed to support the construction of models
in the Unified Modeling Language (UML) [8], the de facto standard in object-
oriented software modeling. They enable developers to perform extensive error



checking on UML models that describe system prototypes and support the trans-
lation of UML state diagrams into Promela for analysis with the SPIN model
checker.

Unified Modeling Language. The Unified Modeling Language (UML) is a general-
purpose visual modeling language that is used for modeling object-oriented soft-
ware. It comprises several types of diagram notations, including support for class
diagrams, interaction diagrams, state machine diagrams, and others. A UML
model may contain many different diagrams that describe different views of the
same system. For the purposes of this paper, we assume the use of UML version
1.5 and focus on state machine diagrams. A state machine diagram (hereafter,
“state diagram”) describes the various states in which a system can be and
the transitions between the states. Visually, a state diagram comprises rounded
rectangles (representing states) and lines with arrows that indicate transitions
between states. The lines are annotated with optional guards and trigger events
that denote the conditions that enable a transition and the actions that are gen-
erated as a result of the transition, respectively. In this study, we use a domain
model (expressed in terms of a class diagram notation) to provide the context
and vocabulary for the state diagrams.

SPIN Model Checker. The SPIN model checker [7] is a tool for exhaustively
verifying state-based models. It takes a model expressed in Promela and pro-
duces a model checker in C code. SPIN uses nondeterministic automata to check
properties expressed in Linear Temporal Logic and performs exhaustive analysis
of a system’s state space in order to identify undesirable system behaviors. It
was originally developed to formally analyze telecommunications protocols, but
in recent years it has also been used to analyze distributed systems [9, 10].

2.2 Marple

Marple is a tool that automatically discovers latent properties in UML state
diagrams. It leverages novelty search, an evolutionary search technique, and
formal model analysis to generate a list of properties that describe the behavior
specified by the model.

Evolutionary Computation. Evolutionary computation (EC) is a biologically-
inspired family of techniques for exploring large solution spaces using concepts
such as mutation and selection [11]. EC is effective for finding solutions to prob-
lems that have large solution spaces that cannot be exhaustively explored in
a reasonable amount of time. It begins with a large population of randomly-
generated individuals. Each individual is evaluated to determine its fitness for a
given task. Next, an EC algorithm probabilistically selects a set of individuals
that will represent the next generation. Each selected individual is probabilis-
tically mutated, thus introducing diversity into the population. This process of
selection, mutation, and evaluation continues until a fixed number of generations
have passed or an optimal solution (if one exists) has been found.



Novelty Search. One EC technique, known as novelty search [12], replaces the
explicit fitness computation with a novelty function that measures how different
each individual is from other individuals in the population and in an archive of
previous individuals. Novelty search then selects individuals whose behavior is
the most distant (i.e., the most novel), thus increasing the diversity in the pop-
ulation and exploring the solution space more efficiently than a random search.
The specific measure of distance between individuals varies with the problem
being solved, but a Euclidean distance is typically used when the behavior of an
individual can be mapped to a numerical vector.

3 Body Subsystem Model

In this section, we describe the Body Subsystem model that was used in this
study. The model describes and simulates embedded devices that control the
electronic subsystems of a modern passenger automobile and was created for the
purposes of requirements elicitation and analysis.1 The subsystems of the model
include interior and exterior lighting, power management, and windshield wiper
control. While the onboard electronics involves several more subsystems, these
three were selected because they exhibit known, intended interactions. One of
our objectives was to investigate whether the subsystems also exhibit unknown
interactions. The remainder of this section provides a brief description of each
subsystem under study.

3.1 Lighting Subsystem

The Lighting subsystem comprises 16 classes and is responsible for managing
interior lights, including map, vanity, trunk, and under-hood lamps; and exterior
lights, including head lights (low- and high-beam) and tail lights. The subsystem
also contains classes that monitor the intensity of ambient light in order to
control day time running lights and activate the vehicle’s head lights and tail
lights for night time driving.

3.2 Power Management Subsystem

The Power Management subsystem comprises 25 classes and is responsible for
monitoring ignition status, sleep mode status, battery voltage, and commands
from remote key fobs. The subsystem responds to events such as the insertion
of an ignition key, exceeding vehicle speed thresholds, and the firing of timers.

3.3 Windshield Wiper Subsystem

The Windshield Wiper subsystem comprises eight classes and is responsible for
controlling wiper behavior. The classes represent hardware and software ranging
from the low-level motor controller, the washer fluid pump, and a stall sensor
that turns off the wiper motor if it detects that the wipers are not moving.

1 The model was developed by the industrial partner as an example of an industrial-
strength model with representative system elements and behavior. The model does
not contain any proprietary or specific configuration parameters of a deployed vehi-
cle.



4 Process

In this section, we provide an overview of the process that was used to apply
the toolchain to the Body Subsystem model. A data flow diagram for the process
is shown in Figure 1. The process begins with a system model in XMI (XML
Metadata Interchange) format. In this case, Rhapsody was used by our industrial
collaborators to create the system model because of its support for requirements
traceability, code generation capabilities, and support for state-based modeling.
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Fig. 1. Data Flow Diagram

4.1 Model Transformation

First, the XMI model is given to step 1: Model Transformation. The Cy-
clops tool takes the XMI model and checks for common syntax and semantics
errors. For example, it parses and checks each state transition expressions to en-
sure that they are well-formed and do not refer to undeclared classes, attributes,
or operations. Cyclops produces specific error messages that indicate the na-
ture of any errors that are discovered, and it makes suggestions when appropriate
(e.g., when an attribute from another class is referenced as though it were de-
clared in the current class). Cyclops supports an iterative process of analysis,
detection of errors, and model correction. This incremental error-correction cycle
is shorter and more interactive than comparable techniques available in commer-
cial tools. For example, using code generation to detect syntactic and semantic
errors in a model would require at least one additional step for compilation and
linking compared to our toolchain. Once the errors detected by Cyclops are
resolved, it translates the XMI model into the Hydra Intermediate Language
(HIL) that can then be processed by the Hydra tool.

Hydra is a model translator initially developed by McUmber [13]. It takes a
model in HIL format and produces an equivalent model in Promela (the PROcess
MEta Language). Promela is a formal logic language that was developed to sup-
port analysis and exhaustive checking of concurrent systems of communicating
processes [14]. Promela models are checked using the SPIN model checker [7],
which identifies livelocks, deadlocks, error conditions, and other undesirable be-
havior. It also has support for verifying arbitrary properties specified using Lin-
ear Temporal Logic (LTL) [15].



4.2 Model Analysis

Goldsby and Cheng developed Marple, a novelty-search tool for automatically
discovering properties that represented the behavior of UML models. Specifically,
a property may specify a known system requirement or, more interestingly, an
unknown latent behavior of the model [16]. As part of the 2: Model Analysis
step, Marple accepts the Promela model generated by Hydra and a set of
parameters as input. Marple parameters include the number of properties that
should be returned, the size of the population that the novelty search algorithm
should use, and the number of distinct classes (i.e., domain elements) that are
mentioned in each property. The parameters may be tuned by the system devel-
oper according to the model being analyzed and the number of results that are
desired.

Within Marple, each individual is an LTL property created by instantiat-
ing one the five most commonly occurring LTL specification patterns [17] with
model specific elements provided as part of the parameters. Each property is
evaluated using the SPIN [7] model checker. To assess the novelty of a property
that holds for the model, Marple compares the state space of the shortest path
that satisfies the property to the state space of other properties. If the property
visits a previously unexplored region of the state space, then the property is con-
sidered more novel, and thus more fit, than a property that visits states within
a well-explored region. New properties are compared to other properties within
the current generation and within the archive of previously generated proper-
ties. By including the properties in the archive in the comparison, the novelty
search algorithm is able to remember the portions of the solution space that it
has explored previously, thus ensuring that the algorithm does not stagnate or
become stuck in a suboptimal portion of the space.

As output, Marple produces a set of LTL properties that are presented
to the developer in natural language for readability purposes. To enable this
natural language property representation, we use a component of SPIDER [18],
a specification pattern instantiator and analysis tool to translate between LTL
properties and natural language [18].

4.3 Property Review

Finally, in step 3: Property Review, the latent properties discovered by Marple
are presented in natural language to the system developer for review. If a given
property is desirable, then the developer may consider adding it to the list of ex-
plicit system requirements. If the property is undesirable, however, action must
be taken to ensure that the property does not continue to hold. For example, the
developer might examine the state diagrams for the classes that are mentioned in
the property. If an error is discovered in the diagrams, then the model is revised
and the toolchain is restarted at step 1.

5 Related Work
As stated earlier, many commercial tools support the creation of UML models,
syntax checking, simulation, and code generation capabilities. However, they do
not support the automated detection of the full suite of syntactic and semantic



error checks for state-based diagrams that we describe in this paper. Addition-
ally, they do not support the identification of latent properties satisfied by the
model. In this section, we explore research tools that have been created to ad-
dress these two challenges.

5.1 Consistency Checking Among UML Class and State Diagrams
One key challenge that arises as the result of using multiple diagrams to pro-
vide different views of the same system is maintaining consistency among these
different representations. As a result, researchers have developed a number of
approaches to support various aspects of consistency checking among UML mod-
els (e.g., [19–25]). The toolchain described by this paper automatically detects
inconsistencies in the syntax and semantics of UML class and state diagrams cre-
ated as part of the late requirements engineering phase of development. Thus,
we focus our attention on approaches that examine consistency among these
two diagram types. Simmonds et al. use rules presented in terms of description
logic [26], a subset of first order predicate logic, to identify inconsistencies among
UML class, sequence, and state diagrams during the design phase [24]. However,
their approach does not check that the transitions within the state diagram
use viable elements from the class diagram. Gomaa et al. present an approach
to checking the consistency among use case diagrams, class diagrams, sequence
diagrams, and state diagrams [22]. Their manual approach involves specifying
consistency checking rules among the various types of diagrams, including class
and state diagrams. Egyed proposes a Rational Rose plugin that can be used
to detect and resolve inconsistencies that arise within UML models at the de-
sign phase [19]. Their approach relies upon the specification of consistency rules,
which are periodically evaluated. To the best of our knowledge, these consis-
tency rules can detect whether elements of the state diagrams are consistent
with those that appear in the class diagram, but do not detect subtle errors,
such as assignments that occur within transition guards. Schwarzl and Peischl
propose an approach to statically analyzing state diagrams for syntax, existence,
data type, communication, non-determinism, and transition hiding errors [23].
As part of this process, the transitions on the state diagrams are checked for
well-formedness. The set of syntactical and semantic errors that they detect is a
subset of the errors that Cyclops detects. However, the behavioral errors that
they detect (e.g., deadlock conditions and circular messaging dependencies) are
complementary to errors detected by the approach presented in this paper.

5.2 Detection of Latent Properties
Several approaches generate temporal logic properties that specify the behavior
of systems [27–31]. Because the objective of our approach is to automatically
identify obscure latent properties that might not otherwise be discovered, we fo-
cus on how the approaches blend developer knowledge and automation to identify
properties. Perracotta [31] is a dynamic inference approach that infers properties
from imperfect execution traces, which have been generated by running the pro-
gram code. To produce these execution traces, the developer must instrument
the program to monitor events and states of interest; these are used to form the
possible propositions. Perracotta then creates properties by instantiating eight



variations of the temporal logic response pattern with the propositions. Weimer
and Necula proposed a static inference approach [30], which analyzes program
text and generates properties. These properties specify potentially erroneous be-
havior of the error-handling portions of the source code. Lastly, Chang et al. [28]
proposed a dynamic inference approach that generates properties from program
event traces. The program traces are created during the execution of the program
and track developer-specified events. Chang’s approach involves refining the in-
ference templates built using the Propel patterns [32] to eliminate properties
that are not satisfied by the program’s event traces.

These approaches differ from our toolchain-based approach in two key ways.
First, they focus on automatically generating properties that describe the be-
havior of the code, rather than the model. As such, the cost of correcting errors
in the later development phase is likely to be more expensive. Second, in general,
these approaches rely on the developer to select portions of the code to explore
for properties. This limits the ability of the approaches to discover properties
that represent unwanted latent behavior in blind spots. These notable differences
mean that our approach can be used in a complementary fashion. Specifically,
as part of the model-driven development process our toolchain can be used to
automatically discover properties that may represent unwanted latent behavior
within the UML model. Once the UML model has been translated to code, the
other approaches could be used to ensure that no errors have been introduced.

6 Applying the Toolchain
This section describes our experience of applying the proposed toolchain to the
Body Subsystem model that was presented in Section 3. We present the types of
errors that were discovered, the mitigation strategy that was used for each error,
and the consequences of correcting the error. For clarity, we present the errors
according to the stages of the toolchain. That is, we begin with a discussion
of syntax and consistency errors that Cyclops detected. Next, we discuss the
errors in types and semantics that Cyclops also detected. Finally, we describe
how the model was translated into the Promela language and discuss the latent
properties that Marple discovered.

6.1 Preliminaries
The model comprises class diagrams, sequence diagrams, and state diagrams,
thus providing a rich domain vocabulary (i.e., class, operation, and attribute
names) as well as a complete set of states and transitions that represent the
behavior of the system-to-be. The Body Subsystem model contains 52 classes,
37 state diagrams, 255 states (including composite states), and 400 state transi-
tions. There are fewer state diagrams than classes because several of the classes
are abstract superclasses or static classes that serve as structures. The model
generated approximately 38,000 lines of C++ code. This code was intended to
provide a means to execute the requirements; it is not intended to be sufficiently
detailed to contain platform-specific or implementation details.

6.2 Phase I: Syntax and Consistency Check (Cyclops)

We begin by applying Cyclops to the model, which comprises class and state
diagrams. Cyclops performs a battery of checks on the input model before it



is passed to Hydra to be translated into Promela. It examines each class, at-
tribute, and operation reference and verifies that the referenced element exists.
Cyclops also checks for unmatched or missing parentheses, missing semicolons
between action statements, and ensures that attributes and operations do not
have the same name as their owning class. It also ensures that each state transi-
tion expression is well-formed. Cyclops identified a wide range of errors in our
model, including references to undeclared variables and typographical mistakes.
The categories of errors that were discovered, and their frequency of occurrence,
are shown on the left-hand side of Table 1.

Phase I Phase II
Error Description Frequency Error Description Frequency

Transition expression syntax 12 Misspelled identifier name 18

“==” operator in action list 9 Undefined variable 32

“=” operator in guard 4 Undefined operation 4

Missing/unmatched parentheses 16 Undefined enum. type 11

Missing semicolons 19 Incompatible types 7

Name collision 2 Attribute used as event 2
Table 1. Phase I and II Errors

Error Mitigation. Defects that are discovered during Phase I are typically
inconsistencies that result from typographical errors. Automated tools cannot
make reliable suggestions for resolving most defects of this type, and therefore
Cyclops must rely on software engineers who are familiar with the model to
correct the problem. Once each defect has been corrected, the revised model is
given again as input to Cyclops, and the Phase I analysis is reapplied. It takes
less than one second to parse and check the Body Subsystem, thus providing an
interactive experience. This incremental defect resolution process proceeds until
no further syntax errors are found in the model.

6.3 Phase II: Semantics and Type Check (Cyclops)

Next, we used Cyclops to check the semantics of each state transition in the
model’s state diagrams. Cyclops ensures, for example, that each reference to an
attribute, operation, or class is valid with respect to the model being analyzed,
using the domain model as a point of reference. Furthermore, Cyclops verifies
that boolean comparisons and assignments are between compatible data types.
The errors detected in this phase are shown on the right-hand side of Table 1.

Error Mitigation. Defects that are discovered during Phase II are more sub-
tle, and therefore more difficult to detect, than those discovered during Phase I.
The primary focus of Phase II is on parsing and verifying the contents of state
transition expressions. A state transition expression specifies the conditions un-
der which the modeled system will move from the current state to the next state
and what actions (e.g., variable assignments or calls to operations) will be taken
as a result of the transition. Each expression comprises an optional triggering
event, a set of expressions that form a guard, and a set of actions to perform in
the following format: event[guard]/action-list .



Errors in state transition expressions can be difficult to detect by visual
inspection. For example, it is easy to overlook an assignment operator that was
mistyped as an equality operator. Such an error still produces valid, executable
code in many programming languages that are used for embedded systems (e.g.,
C). However, there is a disconnect between the intent of the code and its actual
behavior when the system is executed, thus making this class of subtle defects
potentially very serious.

6.4 Phase III: Model Translation
In the third phase, the model is free of syntactic and semantic errors and is ready
to be translated by Cyclops and Hydra into the formal language Promela.
Cyclops begins by translating the model into the Hydra Intermediate Language
(HIL). This intermediate step enables us to build new front-end translators for
successive versions of XMI, whose formats evolve over time, without needing
to modify the core translation code in Hydra. Next, Hydra translates the
HIL code into Promela. By constructing an equivalent model in Promela, we
are able to conduct formal analysis of the model and to verify model properties
specified in LTL. Each state diagram in the model is treated as a distinct Promela
process, thus facilitating the interleaved execution that often reveals unexpected
interactions among system components. The translation phase completes within
two seconds for the Body Subsystem model.

6.5 Phase IV: Discovery of Latent System Properties (Marple)
In the fourth and final phase, the Promela model that was produced by Hydra is
provided as input to Marple, which generates a suite of LTL properties that are
presented to the developer in natural language. If a property is desirable, then it
is added to the list of system requirements. A property that is undesirable must
be addressed by the system’s developer. Potential problems created by unwanted
properties include incorrect functional behavior, feature interactions, distributed
behavior problems, and behavioral inconsistencies. This phase takes on the order
of six hours to complete on a 1.8 GHz PC with 16 GB of memory. According
to our industrial collaborators, this time frame was well within the acceptable
range given the potential severity of errors found. In our experiments, Marple
was configured to return 25 properties.

Next, we present a sample set of latent properties that were discovered in the
Body Subsystem. We provide a natural language representation of each property
along with a brief discussion of the property, its consequences, and the mitigation
strategy that was used.

Property 1:
Globally, WiperModes.WiperMaster ! = RSM eventually holds.

Property 1 states that the WiperMaster attribute in the WiperModes class must even-
tually have a value that is not RSM (Rain Sensor Mode). The developer determined
that one of the state transitions in the WiperModes state diagram was missing a guard.
Therefore, the transition was always available to be executed. Once the missing guard
was added, we verified that the property no longer held.

Property 2:
Globally, it is always the case that if DrvrDrSwitch.Switch == 1

holds, then Voltage Range Monitor.VBattRaw ! = 18 previously held.



Property 2 states that if the Switch attribute in the DrvrDrSwitch (Driver Door
Switch) class has a value of 1 then the value VBattRaw attribute of the
Voltage Range Monitor class must not have been 18 in the previous state. Once the
property was identified, the model developer was able to identify a missing assignment
statement (battStatus = NORM) for the INITIAL state in the VoltageRangeMonitor

state diagram. After the missing assignment statement was added, the property no
longer held.

Property 3:
Globally, it is always the case that if WiperModes.Command == 5 holds,

then AmbientLightSensorInput.lightLevel ! = 4 previously held.

Property 3 states that if the value of the Command attribute in the WiperModes class is
HALT, then the value of the lightLevel attribute in the
AmbientLightSensorInput class must not have been TWILIGHT in the previous state.
Despite the different set of classes and attributes in this property as opposed to prop-
erty 2, the model developer discovered that Property 2 and Property 3 held because
of the same missing assignment statement in the VoltageRangeMonitor state diagram.
After the statement was added to remedy Property 2, Property 3 no longer held.

Property 4:
Globally, it is always the case that WiperModes.Command ! = HALT.

Property 4 states that the value of the Command attribute in the WiperModes class will

never be HALT. From this property, the model developer determined that a triggering

event in the RelayControl class (part of the Windshield Wipers subsystem) never

occurs, and thus the state machine remains in the WAIT state indefinitely. Figure 2 shows

partial state diagrams from the RelayControl and WiperModes classes. There was a

missing call to the event RlyCtlActive (shown in bold) in the transition expression

for the initial state in RelayControl (Figure 2(a)). Since the transition expression for

WiperModes (Figure 2(b)) is waiting for the event to be fired (also shown in bold), it

will wait indefinitely. After adding a call to the missing event in the appropriate state

transition in RelayControl, the property no longer held.

ACTIVE

/ RlyCtlActive();
HighLowRelayCmd = NOT_HIGH;
RunParkRelayCmd = OFF

(a) RelayControl (b) WiperModes

BOOT

WAIT

RlyCtlActive/Command = SINGLE;
WashCleanupFlag = NO_WASH;
WiperMaster = UNDEFINED;
ParkCmd = false

HIGH

OFF VOLTAGE/
FAULT

WPROFF

WAIT_WASH STOPPING
. . . . . .

Fig. 2. Partial State Diagrams for Classes Affected by Property 4

7 Discussion
In this section, we present a discussion of the results of applying the proposed
toolchain and consider the consequences of its use in an industrial development
setting. As in previous sections, we present the discussion in terms of each phase
of the toolchain.

7.1 Syntax and Semantics Defects
We had access to two major revisions of the Body Subsystem model for this work:
an early revision that had not been used to generate source code and thus con-



tained syntax errors and type inconsistencies, and a subsequent revision that had
undergone source code generation and compilation. In order to assess Cyclops’s
ability to detect syntax and semantics errors, we applied it to the earlier model
revision. Cyclops detected all of the errors that the compilers had detected
during source code generation and compilation, and it also identified additional
errors that were subtle and would be difficult to locate by manual inspection.
For example, an assignment statement that was mistyped as a boolean com-
parison would not be detected by a compiler, but such a mistake may have an
adverse effect on system behavior. The developer of the Body Subsystem model
stated that without the use of a tool such as Cyclops, these subtle errors would
have been allowed to propagate into generated source code and, perhaps, into
the design and implementation of the system. Since system models are typically
small during the late requirements stage of the software lifecycle, such defects
are straightforward to resolve once they have been identified. Identifying and re-
solving these subtle defects in the requirements stage reduces the amount of time
spent debugging and reengineering the system at later stages of development.

7.2 Latent Property Detection

While the proposed toolchain detects several types of model errors, the developer
of the Body Subsystem told us that the toolchain is most useful for identifying
portions of the model or system requirements that are missing. The toolchain
identified a set of missing constant initializations, transition guards, and transi-
tion action statements. The discovered properties did not always point directly
to the missing model components (e.g., properties 2 and 3 in Section 6), but they
yielded enough information for a developer with knowledge of the system and
model to make inferences about the possible causes of the defect and to revise
the model accordingly. In the absence of the proposed toolchain, such defects
would most likely be discovered during integration testing after the source code
has been completed, thus increasing the cost to repair the defect.

Marple uses an evolutionary search technique to explore the space of prop-
erties for a given model. Due to inherent randomness in the search process, it is
unlikely that Marple will revisit the same property in independent executions.
However, it is straightforward to make note of any interesting properties and to
re-examine them at a later time to monitor for regressions. The ability to track
defects over time facilitated a step-wise, iterative model refinement process that
enabled us to work with the model developer, who works with us remotely, to
incrementally resolve the problems that our toolchain identified.

8 Conclusions

In this paper, we presented an experience report describing the use of a toolchain
for detecting syntactic and semantics errors in behavioral system models, as
well as detecting latent system properties during the early requirements phase
of the software lifecycle. We demonstrated that the proposed toolchain is an
effective means for identifying syntax errors, resolving ambiguous references,
and discovering unwanted latent system properties.



We are considering several avenues for future work. First, we plan to integrate
metamodel-level consistency checking into the Cyclops tool, thus enabling flex-
ible and robust error detection that is grounded in a formal semantics for UML
state diagrams. Next, we are investigating patterns within the discovered latent
properties and to leverage their key features to fine-tune parameters for the
Marple tool. Finally, we are exploring several strategies for reconfiguring the
toolchain to detect situations in which two system features interact and lead to
system failures or other unexpected behavior.
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